Re: Arbitrary-precision numbers in patterns
- To: mathgroup at smc.vnet.net
- Subject: [mg45409] Re: Arbitrary-precision numbers in patterns
- From: drbob at bigfoot.com (Bobby R. Treat)
- Date: Tue, 6 Jan 2004 04:17:19 -0500 (EST)
- References: <btb906$jqd$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
I can't WAIT to hear somebody explain why this is acceptable behavior!!!
Bobby
Maxim <dontsendhere@.> wrote in message news:<btb906$jqd$1 at smc.vnet.net>...
> Compare
>
> In[1]:=
> Do[ f[k] = k, {k, 1., 17.} ]
> f[1.`20]
> Clear[f]
>
> Out[2]=
> 1.
>
> and
>
> In[1]:=
> Do[ f[k] = k, {k, 1., 18.} ]
> f[1.`20]
> Clear[f]
>
> Out[2]=
> f[1.0000000000000000000]
>
> -- and the user's best bet to figure out how it'll work is probably to
> flip a coin.
>
> The reason is probably just that the hashing mechanism breaks down,
> because the result returned by Mathematica changes after it re-sorts
> some internal table of DownValues for f (the 'boundary value' 17 is for
> version 5.0 on my machine; if 17. and 18. don't work, try 2. and 100.).
> But in general, my opinion is that it is only to be expected -- when we
> don't even know for sure how the definitions for f can be reordered.
>
> Maxim Rytin
> m.r at prontomail.com
- Follow-Ups:
- Re: Re: Arbitrary-precision numbers in patterns
- From: Andrzej Kozlowski <akoz@mimuw.edu.pl>
- Re: Re: Arbitrary-precision numbers in patterns