Re: Eliminating parameters
- To: mathgroup at smc.vnet.net
- Subject: [mg61572] Re: [mg61557] Eliminating parameters
- From: pacoga at ctv.es
- Date: Sat, 22 Oct 2005 03:24:12 -0400 (EDT)
- References: <200510220436.AAA06279@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Thank you for your answer,
I have
ptP = {a*((-c^2)*v*(v + w)^2 - w*((-a^2)*v*(v + w) + b^2*(v +
w)^2 +
2*a*v*Sqrt[c^2*v*(v + w) + w*((-a^2)*v + b^2*(v + w))])),
2*a^3*v^2*w - 2*a*v*(v + w)*(c^2*v + b^2*w) +
a^2*v*w*Sqrt[c^2*v*(v + w) + w*((-a^2)*v + b^2*(v + w))] -
(2*v + w)*(c^2*v + b^2*w)*
Sqrt[c^2*v*(v + w) + w*((-a^2)*v + b^2*(v + w))],
2*a^3*v*w^2 - 2*a*w*(v + w)*(c^2*v + b^2*w) +
a^2*v*w*Sqrt[c^2*v*(v + w) + w*((-a^2)*v + b^2*(v + w))] -
(v + 2*w)*(c^2*v + b^2*w)*
Sqrt[c^2*v*(v + w) + w*((-a^2)*v + b^2*(v + w))]} /. {v ->
1 - t, w -> t}
(Here v and w are homogenus barycentric coordinates and we can suppose that v+w=1.)
Then I have tried
Eliminate[{X == ptP[[1]], Y == ptP[[2]], Z == ptP[[3]]}, {t}];
I have tried it without substituting v and w too.
Sincerely,
Francisco Javier, from Spain.
--------------------------------------
Francisco Javier Garc=EDa Capit=E1n
IES =C1lvarez Cubero (Priego de C=F3rdoba)
pacoga at ctv.es
--------------------------------------
- References:
- Eliminating parameters
- From: "Francisco Javier" <pacoga@ctv.es>
- Eliminating parameters