Re: Eliminating parameters
- To: mathgroup at smc.vnet.net
- Subject: [mg61572] Re: [mg61557] Eliminating parameters
- From: pacoga at ctv.es
- Date: Sat, 22 Oct 2005 03:24:12 -0400 (EDT)
- References: <200510220436.AAA06279@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Thank you for your answer, I have ptP = {a*((-c^2)*v*(v + w)^2 - w*((-a^2)*v*(v + w) + b^2*(v + w)^2 + 2*a*v*Sqrt[c^2*v*(v + w) + w*((-a^2)*v + b^2*(v + w))])), 2*a^3*v^2*w - 2*a*v*(v + w)*(c^2*v + b^2*w) + a^2*v*w*Sqrt[c^2*v*(v + w) + w*((-a^2)*v + b^2*(v + w))] - (2*v + w)*(c^2*v + b^2*w)* Sqrt[c^2*v*(v + w) + w*((-a^2)*v + b^2*(v + w))], 2*a^3*v*w^2 - 2*a*w*(v + w)*(c^2*v + b^2*w) + a^2*v*w*Sqrt[c^2*v*(v + w) + w*((-a^2)*v + b^2*(v + w))] - (v + 2*w)*(c^2*v + b^2*w)* Sqrt[c^2*v*(v + w) + w*((-a^2)*v + b^2*(v + w))]} /. {v -> 1 - t, w -> t} (Here v and w are homogenus barycentric coordinates and we can suppose that v+w=1.) Then I have tried Eliminate[{X == ptP[[1]], Y == ptP[[2]], Z == ptP[[3]]}, {t}]; I have tried it without substituting v and w too. Sincerely, Francisco Javier, from Spain. -------------------------------------- Francisco Javier Garc=EDa Capit=E1n IES =C1lvarez Cubero (Priego de C=F3rdoba) pacoga at ctv.es --------------------------------------
- References:
- Eliminating parameters
- From: "Francisco Javier" <pacoga@ctv.es>
- Eliminating parameters