Re: complex functions handling in M8
- To: mathgroup at smc.vnet.net
- Subject: [mg121401] Re: complex functions handling in M8
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Wed, 14 Sep 2011 05:12:41 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Reply-to: hanlonr at cox.net
T0 = 11/10; alph = 1; bet = 1; gam = 1/2; gam0 = 1/2; Ie = 5; Y0 = 0; Ga[x_, y_, z_] := gam*Ie/((1 + x)^2) - x*z/((1 + x)^2 + I*T0*y*(1 + x)); Gb[x_, y_, z_] := Sqrt[Ga[x, y, z]^2 - bet^2*y^4 + 2*Ie*gam0*bet*y^2]; FM[x_, y_, z_] := -alph*y^2 + Ga[x, y, z] - Gb[x, y, z]; FP[x_, y_, z_] := -alph*y^2 + Ga[x, y, z] + Gb[x, y, z]; Frm[x_, y_, z_] := Re[FM[x, y, z]]; Fim[x_, y_, z_] := Im[FM[x, y, z]]; Frp[x_, y_, z_] := Re[FP[x, y, z]]; Fip[x_, y_, z_] := Im[FP[x, y, z]]; Frm[x, Y0, 3] // FullSimplify[#, Element[x, Reals]] & Piecewise[{{(5 - 6*x)/(1 + x)^2, 6*x > 5}}, 0] Fim[x, Y0, 3] // FullSimplify[#, {Element[x, Reals], x != -1}] & 0 Limit[Fim[x, Y0, 3], x -> -1] 0 Frp[x, Y0, 3] // FullSimplify[#, Element[x, Reals]] & Piecewise[{{(5 - 6*x)*Re[1/(1 + x)^2], 6*x <= 5}}, 0] Fip[x, Y0, 3] // FullSimplify[#, {Element[x, Reals], x != -1}] & 0 Limit[Fip[x, Y0, 3], x -> -1] 0 Bob Hanlon ---- Dikande <amdikande at googlemail.com> wrote: ============= I wish to generate curves from a 3-variable complex function under Mathematica 8. The results (shape of the curves) I get do not reflect expectations. I am a rather old mathematica user and used this program to solve quite complicated complex problems, including root extractions from functions involving special several complex arguments functions and never experienced such a failure from Mathematica. In fact I have always used old versions M7 of latest), and only today I decided to try M8 and came across this problem. The might be a problem with handling of complex functions under M8 oder??? This is the code having a problem: T0 = 1.1; alph = 1.0; bet = 1.0; gam = 0.5; gam0 = 0.5; Ie = 5.0; Y0 = 0.0; Ga[x_, y_, z_] := gam*Ie/((1.0 + x)^2) - x*z/((1.0 + x)^2 + I*T0*y*(1.0 + x)); Gb[x_, y_, z_] := Sqrt[Ga[x, y, z]^2 - bet^2*y^4 + 2.0*Ie*gam0*bet*y^2]; FM[x_, y_, z_] := -alph*y^2 + Ga[x, y, z] - Gb[x, y, z]; FP[x_, y_, z_] := -alph*y^2 + Ga[x, y, z] + Gb[x, y, z]; Frm[x_, y_, z_] := Re[FM[x, y, z]]; Fim[x_, y_, z_] := Im[FM[x, y, z]]; Frp[x_, y_, z_] := Re[FP[x, y, z]]; Fip[x_, y_, z_] := Im[FP[x, y, z]]; Plot[Frm[x, Y0, 3.0], {x, 0.0, 10}] Plot[Frp[x, Y0, 3.0], {x, 0.0, 10}] Normally Frm[x, Y0, 3] is always zero but M8 displays nonzero data but not M7!