Re: Laplace Distribution
- To: mathgroup@smc.vnet.net
- Subject: [mg11962] Re: [mg11888] Laplace Distribution
- From: Bob Hanlon <BobHanlon@aol.com>
- Date: Fri, 10 Apr 1998 01:03:50 -0400
In a message dated 4/3/98 6:05:23 AM, tie@cscn.com wrote: >I am working on Lapalace Distribution with pdf f(x) = (2*beta)^(-1) * >exp(-(absx)/beta). variance of this distribution is 2*(beta^2). so if >we take beta=1/sqrt(2), we have laplace dist'n with unit variance. how >can i write a Mathematica function for this density and how can i plot >the theoretical q-q plot of laplace against Normal. > >note. it has to integrate to one. Needs["Statistics`ContinuousDistributions`"]; Needs["Statistics`DescriptiveStatistics`"]; dist = LaplaceDistribution[m, b]; PDF[dist, x] E^(-((-m + x)*Sign[-m + x])/(2*b^2)) This PDF is in error. D[CDF[dist, x] /. Sign[x - m] -> 1, x] 1/(2*b*E^((-m + x)/b)) D[CDF[dist, x] /. Sign[x - m] -> -1, x] E^((-m + x)/b)/(2*b) The PDF should be Exp[-((Sign[x - m]*(x - m))/b)]/(2*b) Since you are interested in the case of zero mean and unit variance, then the PDF is Exp[-Sign[x - m]*(x - m)/b]/(2*b) /. {m -> 0, b -> 1/Sqrt[2]} 1/(Sqrt[2]*E^(Sqrt[2]*x*Sign[x])) dist01 = LaplaceDistribution[0, 1/Sqrt[2]]; f[x_] := Exp[-Sign[x]*Sqrt[2]*x]/Sqrt[2]; Integrating the PDF over the domain should give unity: Integrate[f[x] /. Sign[x] -> -1, {x, -Infinity, 0}] + Integrate[f[x] /. Sign[x] -> 1, {x, 0, Infinity}] 1 Plot[{f[x], CDF[dist01, x]}, {x, -3, 3}]; The mean is Integrate[x*f[x] /. Sign[x] -> -1, {x, -Infinity, 0}] + Integrate[x*f[x] /. Sign[x] -> 1, {x, 0, Infinity}] 0 With a zero mean, the variance is equal to the mean square Integrate[x^2*f[x] /. Sign[x] -> -1, {x, -Infinity, 0}] + Integrate[x^2*f[x] /. Sign[x] -> 1, {x, 0, Infinity}] 1 Quantile is the inverse of the CDF. Quantile[dist01, q] -((Log[1 - (-1 + 2*q)*Sign[-1 + 2*q]]*Sign[-1 + 2*q])/Sqrt[2]) Plot[Quantile[dist01, q], {q, 0.1, 0.9}]; Plot[Quantile[dist01, CDF[dist01, x]], {x, -5, 5}]; Plot[CDF[dist01, Quantile[dist01, q]], {q, 0, 1}]; distNorm = NormalDistribution[0, 1]; PDF[distNorm, x] 1/(E^(x^2/2)*Sqrt[2*Pi]) Quantile[distNorm, q] Sqrt[2]*InverseErf[0, -1 + 2*q] I do not know what "the theoretical q-q plot of laplace against Normal" means; however, it may be something like one of the following Plot[CDF[distNorm, Quantile[dist01, q]], {q, 0, 1}]; Plot[CDF[dist01, Quantile[distNorm, q]], {q, 0, 1}]; Bob Hanlon