Re: Inverse Laplace output format?
- To: mathgroup at smc.vnet.net
- Subject: [mg28785] Re: [mg28769] Inverse Laplace output format?
- From: BobHanlon at aol.com
- Date: Sat, 12 May 2001 20:18:18 -0400 (EDT)
- Sender: owner-wri-mathgroup at wolfram.com
f = (11s^2 + 172s + 700)/((s + 2)(s^2 + 12s + 100)); ans = FullSimplify[ExpToTrig[InverseLaplaceTransform[f, s, t]]] (6*Cos[8*t] + 5*E^(4*t) + 8*Sin[8*t])/E^(6*t) You want to find b such that (6 Cos[8t] + 8 Sin[8t] == 10 Cos[8t - b]) ((Cos[x-b]//TrigExpand) /. x -> 8t) Cos[b]*Cos[8*t] + Sin[b]*Sin[8*t] Off[Solve::ifun]; b /. Flatten[Solve[{10*Cos[b] == 6, 10*Sin[b] == 8}, b]] ArcCos[3/5] (%/Degree)//N 53.13010235415598 Bob Hanlon In a message dated 2001/5/12 1:50:08 AM, chilibean2in at netzero.net writes: >I have the following inverse Laplace - > >f = (11s^2 + 172s + 700)/((s + 2)(s^2 + 12s + 100)) >InverseLaplaceTransform[f, s, t] > >but the answer is in exponential form. > >I understand the ExpToTrig command but I want to get the >answer in "cos theta in degree" form - > >5Exp[-2t] + 10Exp[-6t]cos(8t - 53.13) > >How do I do that because when I use the ExpToTrig I get > >(3 - 4 \[ImaginaryI]) Cosh[(6 + 8 \[ImaginaryI]) t] - (3 - 4 \[ImaginaryI]) >Sinh[(6 + 8 \[ImaginaryI]) t] > >and don't know what to do to get it to my "cos theta in degree" form. >