Re: Characteristic function of Caucy distrbution
- To: mathgroup at smc.vnet.net
- Subject: [mg35527] Re: Characteristic function of Caucy distrbution
- From: Jens-Peer Kuska <kuska at informatik.uni-leipzig.de>
- Date: Thu, 18 Jul 2002 03:06:08 -0400 (EDT)
- Organization: Universitaet Leipzig
- References: <ah24j0$r3d$1@smc.vnet.net>
- Reply-to: kuska at informatik.uni-leipzig.de
- Sender: owner-wri-mathgroup at wolfram.com
Hi, In[]:=expr = Integrate[ Exp[I t x] Gamma/(Gamma^2/2 + (x - m)^2), {x, -Infinity, Infinity}]/Pi; and In[]:=expr /. a_.*Integrate[ex_, bound_] :> Integrate @@ {ex /. x -> y + m, bound /. x -> y, Assumptions -> {Im[t] == 0 && Gamma > 0}} // FullSimplify[#, Element[Gamma, Reals]] & Out[]=(Sqrt[2]*E^(I*m*t - (Gamma*t*Sign[t])/Sqrt[2])*Pi)/Gamma and t*Sign[t] is Abs[t] Regards Jens milkcart wrote: > > Hello > > How is Characteristic function of Caucy distrbution derived properly. > I wrote this code as > > Simplify[Integrate[E^(I*t*x)/ > (1 + (x - $B&L(B)^2/$B&R(B^2), > {x, -Infinity, > Plus[Infinity]}]/ > (Pi*$B&R(B)] > > . But this integration return itself. > > I know that right answer is Exp[I $B&L(B t -$B&R(B Abs[t]]. > How can I get right answer. > > Thanks in advance. > > ***************** > milkcart > milkcart at m17.alpha-net.ne.jp > *************************