Re: Re: Product {for p=2 to infinity} (p^2+1)/(p^2-1)
- To: mathgroup at smc.vnet.net
- Subject: [mg53997] Re: [mg53968] Re: [mg53937] Product {for p=2 to infinity} (p^2+1)/(p^2-1)
- From: DrBob <drbob at bigfoot.com>
- Date: Sun, 6 Feb 2005 00:45:18 -0500 (EST)
- References: <200502040912.EAA01094@smc.vnet.net> <200502050816.DAA22265@smc.vnet.net>
- Reply-to: drbob at bigfoot.com
- Sender: owner-wri-mathgroup at wolfram.com
Daniel, Your Out[9] differs from the result I'm getting in version 5.1: Clear[f] f[n_] = Sum[Log[p^2 + 1] - Log[p^2 - 1], {p, 2, n}] ff = Limit[f[n], n -> Infinity] Log[2] - Log[Gamma[n]] + Log[Gamma[(1 - I) + n]] + Log[Gamma[(1 + I) + n]] - Log[Gamma[2 + n]] - LogGamma[2 - I] - LogGamma[2 + I] (1/3)*(Log[8] - 3*Log[Gamma[2 - I]] - 3*Log[Gamma[2 + I]]) Bobby On Sat, 5 Feb 2005 03:16:29 -0500 (EST), Daniel Lichtblau <danl at wolfram.com> wrote: > Zak Seidov wrote: > >> Dear Math gurus, >> I try to copy Math session: >> \!\(FullSimplify[\[Product]\+\(p = 2\)\%\[Infinity]\((\(p\^2 + >> 1\)\/\(p\^2 - \1\))\)] >> n Sinh[\[Pi]]\/\[Pi]\), >> that is, >> Product {for p=2 to infinity} (p^2+1)/(p^2-1)=> >> sinh(pi)/pi=3.67608 - >> is it OK, >> or this should be 3/2? >> Please email me your help: >> seidovzf at yahoo.com >> >> Many thanks, >> Zak >> >> > > The result you get is consistent with a numeric approximation e.g. by > taking the product to 10^3. > > Alternatively you can try to verify that the sum of logs is correct by > doing an indefinite sum. First we do the sum to infinity and recover the > log of your result. > > In[5]:= Sum[Log[(p^2+1)/(p^2-1)], {p,2,Infinity}] > Out[5]= Log[2] - LogGamma[2 - I] - LogGamma[2 + I] > > Fine so far. Now we do the indefinite summation, that is, sum to > arbitrary 'n'. > In[8]:= f[n_] = Sum[Log[p^2+1]-Log[p^2-1], {p,2,n}] > Out[8]= Log[2] - Log[Gamma[n]] + Log[Gamma[(1 - I) + n]] + > Log[Gamma[(1 + I) + n]] - Log[Gamma[2 + n]] - LogGamma[2 - I] - > LogGamma[2 + I] > > We check that this agrees in the limit as n goes to infinity. > > In[9]:= InputForm[ff = Limit[f[n], n->Infinity]] > Out[9]//InputForm= > ((3*I)*Pi + Log[8] - 3*Log[-Gamma[2 - I]] - 3*Log[Gamma[2 + I]])/3 > > In[10]:= InputForm[FullSimplify[ff]] > Out[10]//InputForm= Log[Sinh[Pi]/Pi] > > Finally one can ask whether the indefinite sum is correct. To show this > you would start with: > > In[31]:= InputForm[g[n_] = FullSimplify[f[n]-f[n-1], > Assumptions->{n>2,Element[n,Integers]}]] > Out[31]//InputForm= > -Log[Gamma[-I + n]] - Log[Gamma[I + n]] + > Log[Gamma[(1 - I) + n]/(-1 + n^2)] + Log[Gamma[(1 + I) + n]] > > You can now try various methods to confirm that this is your summand. > I'll leave the symbolic proof to others and just show a quick numerical > verification. > > In[34]:= FullSimplify[g[5] - (Log[5^2+1] - Log[5^2-1])] > Out[34]= 0 > > > Daniel Lichtblau > Wolfram Research > > > > > > > > -- DrBob at bigfoot.com www.eclecticdreams.net
- References:
- Product {for p=2 to infinity} (p^2+1)/(p^2-1)
- From: seidovzf@yahoo.com (Zak Seidov)
- Re: Product {for p=2 to infinity} (p^2+1)/(p^2-1)
- From: Daniel Lichtblau <danl@wolfram.com>
- Product {for p=2 to infinity} (p^2+1)/(p^2-1)