MathGroup Archive 2007

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: how to simplify n write in mathtype

  • To: mathgroup at smc.vnet.net
  • Subject: [mg78835] Re: how to simplify n write in mathtype
  • From: bhargavi <bhargavi.math at gmail.com>
  • Date: Wed, 11 Jul 2007 06:01:16 -0400 (EDT)
  • References: <f6qegv$a6r$1@smc.vnet.net><f6vn4c$qam$1@smc.vnet.net>

On Jul 10, 3:30 pm, dimitris <dimmec... at yahoo.com> wrote:
> Select the cells, press Ctrl+Shift+I (simultanesouly!) so
> that Mathematica code appeared in InputForm. Avoid special
> characters like greek letters. Copy as Plain Text is preferable.
> Then paste the code to the post and send the message to MathGroup.
> Follow these simple advice we can see your code in a more readable
> format that it is now...
>
> Dimitris

hi,tx for ur suggestion ,this is my expression in input form.plz
suggest me how to convert this expression into mathtype.its very huge
one.i can't make up the begning and ending of the brackets.n can we
convert mathematica note book into pdf file?
 /(Subscript[ , 1] -
   (-420*Da*((240*Da^(7/2)*(-1 + E^(( *Sqrt[ ])/Sqrt[Da]))^3*
          (1 + E^(( *Sqrt[ ])/Sqrt[Da]))* *  + (-1 +  )^5* *
          (-2*E^(( *Sqrt[ ])/Sqrt[Da])*(-1 +  ) +
           E^((2* *Sqrt[ ])/Sqrt[Da])* *(-1 +  *Sqrt[ ]) -
            *(1 +  *Sqrt[ ]))*(-1 + E^((2* *Sqrt[ ])/Sqrt[Da])*
            (-1 +  *Sqrt[ ]) -  *Sqrt[ ])* ^(3/2)*  -
         96*Da^3*(-1 + E^(( *Sqrt[ ])/Sqrt[Da]))^2*Sqrt[ ]*
          ((3 + 4*E^(( *Sqrt[ ])/Sqrt[Da]) + 3*E^((2* *Sqrt[ ])/
                Sqrt[Da]))*(-1 +  )*  -
           5*(-1 + E^((2* *Sqrt[ ])/Sqrt[Da]))* *(-1 +  )*Sqrt[ ]*
              +  *(-1 +   +  *  + E^((2* *Sqrt[ ])/Sqrt[Da])*
              (-1 +   +  * ) + E^(( *Sqrt[ ])/Sqrt[Da])*
              (2 +  *(-2 + 3* )))) + 2*Da^(3/2)*
          (-1 + E^(( *Sqrt[ ])/Sqrt[Da]))*(-1 +  )* *
          (14 - 18*  - 6* ^2 + 10* ^3 + 28* *Sqrt[ ] -
           12* * *Sqrt[ ] - 60* * ^2*Sqrt[ ] +
           44* * ^3*Sqrt[ ] + 2*  - 20* *  + 48* ^2* *  +
           10* ^2*  - 96* ^2* ^2*  + 8* ^3*  +
           48* ^2* ^3*  - 24* * ^2* ^(3/2) +
           24* * ^3* ^(3/2) + 7*  - 51* *  + 87* ^2*  -
           43* ^3*  - 30* * *Sqrt[ ]*  + 66* * ^2*Sqrt[ ]*
              - 36* * ^3*Sqrt[ ]*  - 4* * *  +
           14* ^2* *  - 14* ^3* *  - 4* * ^3* ^(3/2)*  +
           E^((2* *Sqrt[ ])/Sqrt[Da])*(-14 + 84* *Sqrt[ ] - 2*  +
             11*  +  ^2*(-90 + 96* ^2*  + 6* *Sqrt[ ]*
                (34 + 4*  - 11* ) + 171*  - 2* *(29 +  )) +
              *(66 - 48* ^2*  - 99*  + 4* *(5 +  ) + 6* *
                Sqrt[ ]*(-38 + 5* )) +  ^3*(38 - 48* ^2*  +  *
                (40 - 6* ) - 83*  + 4* *Sqrt[ ]*(-15 +
                  *(-6 +  ) + 9* ))) - E^(( *Sqrt[ ])/Sqrt[Da])*
            (14 + 84* *Sqrt[ ] + 2*  - 11*  +
              ^2*(90 - 96* ^2*  + 6* *Sqrt[ ]*(34 + 4*  -
                 11* ) - 171*  + 2* *(29 +  )) +
              *(-66 + 48* ^2*  + 99*  - 4* *(5 +  ) + 6* *
                Sqrt[ ]*(-38 + 5* )) +  ^3*(-38 + 48* ^2*  + 83*
                  +  *(-40 + 6* ) + 4* *Sqrt[ ]*(-15 +
                  *(-6 +  ) + 9* ))) + E^((3* *Sqrt[ ])/Sqrt[Da])*
            (14 - 28* *Sqrt[ ] + 2*  + 7*  +  *(-18 + 48* ^2*
                  - 51*  - 4* *(5 +  ) + 6* *Sqrt[ ]*
                (2 + 5* )) +  ^2*(-6 - 96* ^2*  + 6* *Sqrt[ ]*
                (10 + 4*  - 11* ) + 87*  + 2* *(5 + 7* )) +
              ^3*(10 + 48* ^2*  +  *(8 - 14* ) - 43*  + 4* *
                Sqrt[ ]*(-11 +  *(-6 +  ) + 9* )))) +
         2*Da*(-1 +  )^2*Sqrt[ ]*((-1 + E^(( *Sqrt[ ])/Sqrt[Da]))^2*
            (1 + E^((2* *Sqrt[ ])/Sqrt[Da]))*(-1 +  )^3*  -
           (-1 + E^(( *Sqrt[ ])/Sqrt[Da]))^3*
            (1 + E^(( *Sqrt[ ])/Sqrt[Da]))* *(-1 +  )^3*Sqrt[ ]*
              + (-1 + E^((2* *Sqrt[ ])/Sqrt[Da]))^2* * ^2*
            (1 + 2* *(-1 + 6* ^2 -  ) +  ^2*(1 + 2* ^2*(-6 +  ) +
               2* )) - (-1 + E^((2* *Sqrt[ ])/Sqrt[Da]))* * ^(3/2)*
            (-2 + 20*  - 10* ^2 - 8* ^3 + 5* *  - 16* ^2*  +
             15* ^3*  - 2*E^(( *Sqrt[ ])/Sqrt[Da])*(-1 +  )^2*
              (-2 +  *(16 + 5* )) + E^((2* *Sqrt[ ])/Sqrt[Da])*
              (-2 + 5* *(4 +  ) - 2* ^2*(5 + 8* ) +  ^3*
                (-8 + 15* ))) +  *(3 + 5*  - 7* ^2 -  ^3 - 2*  +
             11* *  - 22* ^2*  + 15* ^3*  +
             2*E^(( *Sqrt[ ])/Sqrt[Da])*(-1 +  )^2*(-8 +  *
                (-6 + 5* )) + 2*E^((3* *Sqrt[ ])/Sqrt[Da])*(-1 +  )^2*
              (-8 +  *(-6 + 5* )) + 2*E^((2* *Sqrt[ ])/Sqrt[Da])*
              (13 +  ^2*(23 - 6* ) + 2*  -  *(25 + 3* ) +  ^3*
                (-11 + 9* )) + E^((4* *Sqrt[ ])/Sqrt[Da])*
              (3 - 2*  +  *(5 + 11* ) +  ^3*(-1 + 15* ) -  ^2*
                (7 + 22* )))) + 48*Da^(5/2)*
          (-1 + E^(( *Sqrt[ ])/Sqrt[Da]))*(-1 +  )*
          (2*(-1 + E^(( *Sqrt[ ])/Sqrt[Da]))^2*
            (1 + E^(( *Sqrt[ ])/Sqrt[Da]))* * ^2 +
           (1 + 4*E^(( *Sqrt[ ])/Sqrt[Da]) + 4*E^((2* *Sqrt[ ])/
                Sqrt[Da]) + E^((3* *Sqrt[ ])/Sqrt[Da]))*(-1 +  )*  -
           2*(-3 - E^(( *Sqrt[ ])/Sqrt[Da]) + E^((2* *Sqrt[ ])/Sqrt[
                Da]) + 3*E^((3* *Sqrt[ ])/Sqrt[Da]))* *(-1 +  )*
            Sqrt[ ]*  - 4*(-1 + E^(( *Sqrt[ ])/Sqrt[Da]))* *
             ^(3/2)*(-1 +   +  *  + E^((2* *Sqrt[ ])/Sqrt[Da])*
              (-1 +   +  * ) + E^(( *Sqrt[ ])/Sqrt[Da])*
              (2 +  *(-2 + 3* ))) + (1 + E^(( *Sqrt[ ])/Sqrt[Da]))*
             *(-2 + 2*  + 2*  - 5* ^2*  + 5* ^2* *  +
             E^((2* *Sqrt[ ])/Sqrt[Da])*(-2 + (2 - 5* ^2)*  +  *
                (2 + 5* ^2* )) - 2*E^(( *Sqrt[ ])/Sqrt[Da])*
              (-2 + (2 - 5* ^2)*  +  *(2 + 5*(-1 +  ^2)* )))) +
         Sqrt[Da]*(-1 + E^(( *Sqrt[ ])/Sqrt[Da]))*(-1 +  )^4* *
          ((-(1 + E^(( *Sqrt[ ])/Sqrt[Da]) + E^((2* *Sqrt[ ])/
                Sqrt[Da]) + E^((3* *Sqrt[ ])/Sqrt[Da])))*
            (1 - 4*  + 3* ^2)*  + (-1 + E^(( *Sqrt[ ])/Sqrt[Da]))*
             *(-1 +  )*(-1 + 5*  + E^((2* *Sqrt[ ])/Sqrt[Da])*
              (-1 + 5* ) + E^(( *Sqrt[ ])/Sqrt[Da])*(-2 + 6* ))*
            Sqrt[ ]*  + (-1 + E^(( *Sqrt[ ])/Sqrt[Da]))*
            (1 + E^(( *Sqrt[ ])/Sqrt[Da]))^2* * * ^(3/2)*
            (-2 +  *(2 + 5* )) - (1 + E^(( *Sqrt[ ])/Sqrt[Da]))* *
            (-1 +  ^2 - 2* ^2* *  + 5* ^2*  + 2* ^2* ^2*  -
             2*E^(( *Sqrt[ ])/Sqrt[Da])*(-1 +  )*(1 +  *
                (-1 + 2*(-2 +  ^2)* )) + E^((2* *Sqrt[ ])/Sqrt[Da])*
              (-1 - 2* ^2* *  +  ^2*(1 + (5 + 2* ^2)* )))) +
         4*Da^2*Sqrt[ ]*(6 - 18*  + 18* ^2 - 6* ^3 +
           24* *Sqrt[ ] - 72* * *Sqrt[ ] + 72* * ^2*Sqrt[ ] -
           24* * ^3*Sqrt[ ] - 14*  + 24* ^2*  + 6* *  -
           72* ^2* *  + 30* ^2*  + 72* ^2* ^2*  -
           22* ^3*  - 24* ^2* ^3*  - 48* * * ^(3/2) +
           96* * ^2* ^(3/2) - 48* * ^3* ^(3/2) + 6* ^2* ^2 -
           6* ^3* ^2 - 27*  + 81* *  - 81* ^2*  +
           27* ^3*  - 24* *Sqrt[ ]*  + 48* * *Sqrt[ ]*  -
           24* * ^2*Sqrt[ ]*  + 15* * *  - 24* ^2* * *
              - 33* ^2* *  + 48* ^2* ^2* *  +
           18* ^3* *  - 24* ^2* ^3* *  +  ^3* ^2*  +
           4*E^(( *Sqrt[ ])/Sqrt[Da])*(-1 +  )^2*(-2*(-7 +  )*  -
             6* ^2* *(4 +  *(-4 +  )) + 6* *Sqrt[ ]*
              ( *(2 + 4*  - 5* ) + 2*(-1 +  )) + 3*(2 - 5* )* ) -
           4*E^((3* *Sqrt[ ])/Sqrt[Da])*(-1 +  )^2*(2*(-7 +  )*  +
             6* ^2* *(4 +  *(-4 +  )) + 6* *Sqrt[ ]*
              ( *(2 + 4*  - 5* ) + 2*(-1 +  )) + 3*(-2 + 5* )*
               ) + E^((4* *Sqrt[ ])/Sqrt[Da])*(6 - 14*  +
             24* ^2*  + 24* *Sqrt[ ]*(-1 +  ) - 27*  +
             3* ^2*(6 + 2* ^2 +  *(10 - 11* ) - 8* *Sqrt[ ]*
                (3 + 4*  -  ) - 27*  + 8* ^2* *(3 + 2* )) -
             3* *(6 - 8* *Sqrt[ ]*(3 + 2*  - 2* ) - 27*  + 8*
                 ^2* *(3 +  ) -  *(2 + 5* )) +
              ^3*(-6 + 24* *Sqrt[ ]*(1 + 2* ) +  ^2*(-6 +  ) + 27*
                  - 24* ^2* *(1 +  ) + 2* *(-11 + 9* ))) -
           2*E^((2* *Sqrt[ ])/Sqrt[Da])*(6 + (42 - 72* ^2)*  -
             3*  - 3* *(6 - 11*  +  *(38 - 5*  + 8* ^2*
                  (-9 + 2* ))) +  ^3*(-6 +  ^2*(-6 +  ) + 27*  - 6*
                 *(5 - 3*  + 4* ^2*(-3 + 2* ))) +
             3* ^2*(6 + 2* ^2 - 19*  +  *(34 - 11*  + 8* ^2*
                  (-9 + 4* ))))))*  - 2*Sqrt[ ]*
        (96*Da^3*(-1 + E^(( *Sqrt[ ])/Sqrt[Da]))^4*  -
         (-1 +  )^5*(-1 - 2*E^(( *Sqrt[ ])/Sqrt[Da])*(-1 +  ) +
           E^((2* *Sqrt[ ])/Sqrt[Da])*(-1 +  *(-1 + 2* *Sqrt[ ])) -
            *(1 + 2* *Sqrt[ ]))*(-1 + E^((2* *Sqrt[ ])/Sqrt[Da])*
            (-1 +  *Sqrt[ ]) -  *Sqrt[ ])*  -
         96*Da^(5/2)*(-1 + E^(( *Sqrt[ ])/Sqrt[Da]))^3*Sqrt[ ]*
          (-1 - 2* *Sqrt[ ] +  *(1 + 2* *Sqrt[ ] +  ) +
           E^(( *Sqrt[ ])/Sqrt[Da])*(-1 + 2* *Sqrt[ ] +
              *(1 - 2* *Sqrt[ ] +  ))) + 4*Da*(-1 +  )^2* *
          (9*  - 3* ^2 + 2*E^(( *Sqrt[ ])/Sqrt[Da])*(-1 +  )*
            (5 + 2* *(2 + 7* *Sqrt[ ]) - 5* *Sqrt[ ]) -
           2*E^((3* *Sqrt[ ])/Sqrt[Da])*(-1 +  )*(-5 - 4*  -
             5* *Sqrt[ ] + 14* * *Sqrt[ ]) - 5* *Sqrt[ ] +
           19* * *Sqrt[ ] - 2* * ^2*Sqrt[ ] + 2* *  -
           2* ^2*  + 6* ^2* ^2*  + E^((4* *Sqrt[ ])/Sqrt[Da])*
            (5* *Sqrt[ ] +  *(9 - 19* *Sqrt[ ] + 2* ) +
              ^2*(-3 + 2* *Sqrt[ ] - 2*  + 6* ^2* )) -
           2*E^((2* *Sqrt[ ])/Sqrt[Da])*(-10 +  *(11 + 2* ) +
              ^2*(-7 + (-2 + 6* ^2)* ))) +
         24*Da^2*(-1 + E^(( *Sqrt[ ])/Sqrt[Da]))^2*(1 - 2*  +  ^2 +
           4* *Sqrt[ ] - 8* * *Sqrt[ ] + 4* * ^2*Sqrt[ ] -
           3*  + 4* ^2*  - 8* ^2* *  + 3* ^2*  +
           4* ^2* ^2*  - 8* * * ^(3/2) + 8* * ^2* ^(3/2) +
            ^2* ^2 + 2*E^(( *Sqrt[ ])/Sqrt[Da])*
            (1 + (3 - 4* ^2)*  +  *(-2 + 8*(-1 +  ^2)* ) +
              ^2*(1 + (5 - 4* ^2)*  +  ^2)) +
           E^((2* *Sqrt[ ])/Sqrt[Da])*(1 - 4* *Sqrt[ ] - 3*  +
             4* ^2*  +  *(-2 - 8* ^2*  + 8* *Sqrt[ ]*
                (1 +  )) +  ^2*(1 + 3*  + 4* ^2*  +  ^2 - 4* *
                Sqrt[ ]*(1 + 2* )))) + 4*Da^(3/2)*
          (-1 + E^(( *Sqrt[ ])/Sqrt[Da]))*(-1 +  )*Sqrt[ ]*
          (9 - 6*  - 3* ^2 + 18* *Sqrt[ ] - 18* * ^2*Sqrt[ ] +
           4*  - 17* *  + 24* ^2* *  +  ^2*  -
           24* ^2* ^2*  - 12* * ^2* ^(3/2) +
           E^((3* *Sqrt[ ])/Sqrt[Da])*(9 - 18* *Sqrt[ ] + 4*  +
              *(-6 + (-17 + 24* ^2)* ) +  ^2*(-3 +   - 24* ^2*
                  + 6* *Sqrt[ ]*(3 + 2* ))) -
           E^(( *Sqrt[ ])/Sqrt[Da])*(9 + 54* *Sqrt[ ] + 4*  +
              *(-30 - 96* *Sqrt[ ] - 17*  + 24* ^2* ) +
              ^2*(21 + 25*  - 24* ^2*  + 6* *Sqrt[ ]*
                (7 + 2* ))) + E^((2* *Sqrt[ ])/Sqrt[Da])*
            (-9 + 54* *Sqrt[ ] - 4*  +  *(30 - 96* *Sqrt[ ] + 17*
                  - 24* ^2* ) +  ^2*(-21 - 25*  + 24* ^2*  + 6*
                 *Sqrt[ ]*(7 + 2* )))) - 2*Sqrt[Da]*
          (-1 + E^(( *Sqrt[ ])/Sqrt[Da]))*(-1 +  )^4*Sqrt[ ]*
          (1 -   + 3* *Sqrt[ ] - 3* * *Sqrt[ ] - 2*  +
           2* ^2*  - 3* *  - 2* ^2* *  - 5* * * ^(3/2) -
           E^(( *Sqrt[ ])/Sqrt[Da])*(-1 +  *Sqrt[ ] - 2*  +
             2* ^2*  +  *(1 + 7*  - 2* ^2*  +  *Sqrt[ ]*
                (-1 + 5* ))) + E^((2* *Sqrt[ ])/Sqrt[Da])*
            (1 +  *Sqrt[ ] + 2*  - 2* ^2*  +
              *(-1 - 7*  + 2* ^2*  +  *Sqrt[ ]*(-1 + 5* ))) +
           E^((3* *Sqrt[ ])/Sqrt[Da])*(1 - 3* *Sqrt[ ] - 2*  +
             2* ^2*  +  *(-1 - 3*  - 2* ^2*  +  *Sqrt[ ]*
                (3 + 5* )))))*Subscript[ , 1]) +
     (-1 +  )^2* *
      ((1 -  )*(6720*Da^3*(-1 + E^(( *Sqrt[ ])/Sqrt[Da]))^4*Sqrt[ ] -
         17*(-1 +  )^6*(1 + E^((2* *Sqrt[ ])/Sqrt[Da])*
             (1 -  *Sqrt[ ]) +  *Sqrt[ ])^2*Sqrt[ ] -
         153*Sqrt[Da]*(-1 + E^((2* *Sqrt[ ])/Sqrt[Da]))*(-1 +  )^5*
          (-1 + E^((2* *Sqrt[ ])/Sqrt[Da])*(-1 +  *Sqrt[ ]) -
            *Sqrt[ ])*  - 840*Da^(5/2)*
          (-1 + E^(( *Sqrt[ ])/Sqrt[Da]))^3*(-4 - 8* *Sqrt[ ] -
           5*  +  *(4 + 8* *Sqrt[ ] + 9* ) +
           E^(( *Sqrt[ ])/Sqrt[Da])*(-4 + 8* *Sqrt[ ] - 5*  +
              *(4 - 8* *Sqrt[ ] + 9* ))) +
         84*Da^2*(-1 + E^(( *Sqrt[ ])/Sqrt[Da]))^2*(-1 +  )*Sqrt[ ]*
          (-3 - 60* *Sqrt[ ] +  *(43 + 100* *Sqrt[ ] + 25* ) +
           2*E^(( *Sqrt[ ])/Sqrt[Da])*(-57 +  *(57 + 25* )) +
           E^((2* *Sqrt[ ])/Sqrt[Da])*(-3 + 60* *Sqrt[ ] +
              *(43 - 100* *Sqrt[ ] + 25* ))) + 4*Da*(-1 +  )^3*
          Sqrt[ ]*(112 - 7*  - 224*E^((3* *Sqrt[ ])/Sqrt[Da])*
            (-1 +  )*(-1 +  *Sqrt[ ]) +
           224*E^(( *Sqrt[ ])/Sqrt[Da])*(-1 +  )*(1 +  *Sqrt[ ]) +
           112* *Sqrt[ ] + 98* * *Sqrt[ ] + 97*  - 97* *  +
           105* ^2* *  + E^((4* *Sqrt[ ])/Sqrt[Da])*
            (112 - 112* *Sqrt[ ] + 97*  +  *(-7 - 98* *Sqrt[ ] -
               97*  + 105* ^2* )) - 2*E^((2* *Sqrt[ ])/Sqrt[Da])*
            (-112 + 97*  +  *(7 + (-97 + 105* ^2)* ))) +
         28*Da^(3/2)*(-1 + E^(( *Sqrt[ ])/Sqrt[Da]))*(-1 +  )^2*
          (15 - 15*  + 45* *Sqrt[ ] - 45* * *Sqrt[ ] - 82*  +
           30* ^2*  - 8* *  - 30* ^2* *  -
           90* * * ^(3/2) + E^(( *Sqrt[ ])/Sqrt[Da])*
            (15 - 15* *Sqrt[ ] + 82*  - 30* ^2*  +
              *(-15 + 15* *(1 - 6* )*Sqrt[ ] - 172*  + 30* ^2*
                 )) + E^((3* *Sqrt[ ])/Sqrt[Da])*
            (15 - 45* *Sqrt[ ] - 82*  + 30* ^2*  +
              *(-15 - 8*  - 30* ^2*  + 45* *Sqrt[ ]*
                (1 + 2* ))) + E^((2* *Sqrt[ ])/Sqrt[Da])*
            (15 + 15* *Sqrt[ ] + 82*  - 30* ^2*  +
              *(-15 - 172*  + 30* ^2*  + 15* *Sqrt[ ]*
                (-1 + 6* )))))*  -
       140*(144*Da^3*(-1 + E^(( *Sqrt[ ])/Sqrt[Da]))^4*Sqrt[ ] -
         (-1 +  )^6*(1 + E^((2* *Sqrt[ ])/Sqrt[Da])*
             (1 -  *Sqrt[ ]) +  *Sqrt[ ])^2*Sqrt[ ] -
         8*Sqrt[Da]*(-1 + E^((2* *Sqrt[ ])/Sqrt[Da]))*(-1 +  )^5*
          (-1 + E^((2* *Sqrt[ ])/Sqrt[Da])*(-1 +  *Sqrt[ ]) -
            *Sqrt[ ])*  + 24*Da^2*(-1 + E^(( *Sqrt[ ])/Sqrt[Da]))^2*
          (-1 +  )*Sqrt[ ]*(-5* *Sqrt[ ] +
            *(3 + 8* *Sqrt[ ] + 2* ) + 2*E^(( *Sqrt[ ])/Sqrt[Da])*
            (-5 +  *(5 + 2* )) + E^((2* *Sqrt[ ])/Sqrt[Da])*
            (5* *Sqrt[ ] +  *(3 - 8* *Sqrt[ ] + 2* ))) -
         24*Da^(5/2)*(-1 + E^(( *Sqrt[ ])/Sqrt[Da]))^3*
          (-3 - 6* *Sqrt[ ] - 4*  +  *(3 + 6* *Sqrt[ ] + 7* ) +
           E^(( *Sqrt[ ])/Sqrt[Da])*(-3 + 6* *Sqrt[ ] - 4*  +
              *(3 - 6* *Sqrt[ ] + 7* ))) + 2*Da*(-1 +  )^3*
          Sqrt[ ]*(9 - 3*  - 18*E^((3* *Sqrt[ ])/Sqrt[Da])*(-1 +  )*
            (-1 +  *Sqrt[ ]) + 18*E^(( *Sqrt[ ])/Sqrt[Da])*(-1 +  )*
            (1 +  *Sqrt[ ]) + 9* *Sqrt[ ] + 3* * *Sqrt[ ] +
           8*  - 8* *  + 6* ^2* *  +
           E^((4* *Sqrt[ ])/Sqrt[Da])*(9 - 9* *Sqrt[ ] + 8*  +
              *(-3 - 3* *Sqrt[ ] - 8*  + 6* ^2* )) -
           2*E^((2* *Sqrt[ ])/Sqrt[Da])*(-9 + 8*  +
              *(3 + (-8 + 6* ^2)* ))) + 12*Da^(3/2)*
          (-1 + E^(( *Sqrt[ ])/Sqrt[Da]))*(-1 +  )^2*
          (1 -   + 3* *Sqrt[ ] - 3* * *Sqrt[ ] - 6*  +
           2* ^2*  +  *  - 2* ^2* *  - 5* * * ^(3/2) -
           E^(( *Sqrt[ ])/Sqrt[Da])*(-1 +  *Sqrt[ ] - 6*  +
             2* ^2*  +  *(1 + 11*  - 2* ^2*  +  *Sqrt[ ]*
                (-1 + 5* ))) + E^((2* *Sqrt[ ])/Sqrt[Da])*
            (1 +  *Sqrt[ ] + 6*  - 2* ^2*  +
              *(-1 - 11*  + 2* ^2*  +  *Sqrt[ ]*(-1 + 5* ))) +
           E^((3* *Sqrt[ ])/Sqrt[Da])*(1 - 3* *Sqrt[ ] - 6*  +
             2* ^2*  +  *(-1 +   - 2* ^2*  +  *Sqrt[ ]*
                (3 + 5* )))))*Subscript[ , 1]))/
    (140*Sqrt[ ]*(24*Da^2*(-1 + E^(( *Sqrt[ ])/Sqrt[Da]))^2*Sqrt[ ] +
       (-1 +  )^4*(-1 + E^((2* *Sqrt[ ])/Sqrt[Da])*
          (-1 +  *Sqrt[ ]) -  *Sqrt[ ])*Sqrt[ ] -
       12*Da*(-1 +  )*(-1 - 2*E^(( *Sqrt[ ])/Sqrt[Da])*(-1 +  ) +
         E^((2* *Sqrt[ ])/Sqrt[Da])*(-1 +  * *Sqrt[ ]) -
          * *Sqrt[ ])*Sqrt[ ] + 4*Sqrt[Da]*
        (-1 + E^((2* *Sqrt[ ])/Sqrt[Da]))*(-1 +  )^3*  -
       12*Da^(3/2)*(-1 + E^(( *Sqrt[ ])/Sqrt[Da]))*
        (-1 - 2* *Sqrt[ ] +  *(1 + 2* *Sqrt[ ] +  ) +
         E^(( *Sqrt[ ])/Sqrt[Da])*(-1 + 2* *Sqrt[ ] +
            *(1 - 2* *Sqrt[ ] +  ))))^2))



  • Prev by Date: Re: How to factor a rational
  • Next by Date: Re: Opening a foreign file from Mathematica
  • Previous by thread: Re: how to simplify n write in mathtype
  • Next by thread: how to simplify n write in mathtype