Re: how to simplify n write in mathtype
- To: mathgroup at smc.vnet.net
- Subject: [mg78835] Re: how to simplify n write in mathtype
- From: bhargavi <bhargavi.math at gmail.com>
- Date: Wed, 11 Jul 2007 06:01:16 -0400 (EDT)
- References: <f6qegv$a6r$1@smc.vnet.net><f6vn4c$qam$1@smc.vnet.net>
On Jul 10, 3:30 pm, dimitris <dimmec... at yahoo.com> wrote: > Select the cells, press Ctrl+Shift+I (simultanesouly!) so > that Mathematica code appeared in InputForm. Avoid special > characters like greek letters. Copy as Plain Text is preferable. > Then paste the code to the post and send the message to MathGroup. > Follow these simple advice we can see your code in a more readable > format that it is now... > > Dimitris hi,tx for ur suggestion ,this is my expression in input form.plz suggest me how to convert this expression into mathtype.its very huge one.i can't make up the begning and ending of the brackets.n can we convert mathematica note book into pdf file? /(Subscript[ , 1] - (-420*Da*((240*Da^(7/2)*(-1 + E^(( *Sqrt[ ])/Sqrt[Da]))^3* (1 + E^(( *Sqrt[ ])/Sqrt[Da]))* * + (-1 + )^5* * (-2*E^(( *Sqrt[ ])/Sqrt[Da])*(-1 + ) + E^((2* *Sqrt[ ])/Sqrt[Da])* *(-1 + *Sqrt[ ]) - *(1 + *Sqrt[ ]))*(-1 + E^((2* *Sqrt[ ])/Sqrt[Da])* (-1 + *Sqrt[ ]) - *Sqrt[ ])* ^(3/2)* - 96*Da^3*(-1 + E^(( *Sqrt[ ])/Sqrt[Da]))^2*Sqrt[ ]* ((3 + 4*E^(( *Sqrt[ ])/Sqrt[Da]) + 3*E^((2* *Sqrt[ ])/ Sqrt[Da]))*(-1 + )* - 5*(-1 + E^((2* *Sqrt[ ])/Sqrt[Da]))* *(-1 + )*Sqrt[ ]* + *(-1 + + * + E^((2* *Sqrt[ ])/Sqrt[Da])* (-1 + + * ) + E^(( *Sqrt[ ])/Sqrt[Da])* (2 + *(-2 + 3* )))) + 2*Da^(3/2)* (-1 + E^(( *Sqrt[ ])/Sqrt[Da]))*(-1 + )* * (14 - 18* - 6* ^2 + 10* ^3 + 28* *Sqrt[ ] - 12* * *Sqrt[ ] - 60* * ^2*Sqrt[ ] + 44* * ^3*Sqrt[ ] + 2* - 20* * + 48* ^2* * + 10* ^2* - 96* ^2* ^2* + 8* ^3* + 48* ^2* ^3* - 24* * ^2* ^(3/2) + 24* * ^3* ^(3/2) + 7* - 51* * + 87* ^2* - 43* ^3* - 30* * *Sqrt[ ]* + 66* * ^2*Sqrt[ ]* - 36* * ^3*Sqrt[ ]* - 4* * * + 14* ^2* * - 14* ^3* * - 4* * ^3* ^(3/2)* + E^((2* *Sqrt[ ])/Sqrt[Da])*(-14 + 84* *Sqrt[ ] - 2* + 11* + ^2*(-90 + 96* ^2* + 6* *Sqrt[ ]* (34 + 4* - 11* ) + 171* - 2* *(29 + )) + *(66 - 48* ^2* - 99* + 4* *(5 + ) + 6* * Sqrt[ ]*(-38 + 5* )) + ^3*(38 - 48* ^2* + * (40 - 6* ) - 83* + 4* *Sqrt[ ]*(-15 + *(-6 + ) + 9* ))) - E^(( *Sqrt[ ])/Sqrt[Da])* (14 + 84* *Sqrt[ ] + 2* - 11* + ^2*(90 - 96* ^2* + 6* *Sqrt[ ]*(34 + 4* - 11* ) - 171* + 2* *(29 + )) + *(-66 + 48* ^2* + 99* - 4* *(5 + ) + 6* * Sqrt[ ]*(-38 + 5* )) + ^3*(-38 + 48* ^2* + 83* + *(-40 + 6* ) + 4* *Sqrt[ ]*(-15 + *(-6 + ) + 9* ))) + E^((3* *Sqrt[ ])/Sqrt[Da])* (14 - 28* *Sqrt[ ] + 2* + 7* + *(-18 + 48* ^2* - 51* - 4* *(5 + ) + 6* *Sqrt[ ]* (2 + 5* )) + ^2*(-6 - 96* ^2* + 6* *Sqrt[ ]* (10 + 4* - 11* ) + 87* + 2* *(5 + 7* )) + ^3*(10 + 48* ^2* + *(8 - 14* ) - 43* + 4* * Sqrt[ ]*(-11 + *(-6 + ) + 9* )))) + 2*Da*(-1 + )^2*Sqrt[ ]*((-1 + E^(( *Sqrt[ ])/Sqrt[Da]))^2* (1 + E^((2* *Sqrt[ ])/Sqrt[Da]))*(-1 + )^3* - (-1 + E^(( *Sqrt[ ])/Sqrt[Da]))^3* (1 + E^(( *Sqrt[ ])/Sqrt[Da]))* *(-1 + )^3*Sqrt[ ]* + (-1 + E^((2* *Sqrt[ ])/Sqrt[Da]))^2* * ^2* (1 + 2* *(-1 + 6* ^2 - ) + ^2*(1 + 2* ^2*(-6 + ) + 2* )) - (-1 + E^((2* *Sqrt[ ])/Sqrt[Da]))* * ^(3/2)* (-2 + 20* - 10* ^2 - 8* ^3 + 5* * - 16* ^2* + 15* ^3* - 2*E^(( *Sqrt[ ])/Sqrt[Da])*(-1 + )^2* (-2 + *(16 + 5* )) + E^((2* *Sqrt[ ])/Sqrt[Da])* (-2 + 5* *(4 + ) - 2* ^2*(5 + 8* ) + ^3* (-8 + 15* ))) + *(3 + 5* - 7* ^2 - ^3 - 2* + 11* * - 22* ^2* + 15* ^3* + 2*E^(( *Sqrt[ ])/Sqrt[Da])*(-1 + )^2*(-8 + * (-6 + 5* )) + 2*E^((3* *Sqrt[ ])/Sqrt[Da])*(-1 + )^2* (-8 + *(-6 + 5* )) + 2*E^((2* *Sqrt[ ])/Sqrt[Da])* (13 + ^2*(23 - 6* ) + 2* - *(25 + 3* ) + ^3* (-11 + 9* )) + E^((4* *Sqrt[ ])/Sqrt[Da])* (3 - 2* + *(5 + 11* ) + ^3*(-1 + 15* ) - ^2* (7 + 22* )))) + 48*Da^(5/2)* (-1 + E^(( *Sqrt[ ])/Sqrt[Da]))*(-1 + )* (2*(-1 + E^(( *Sqrt[ ])/Sqrt[Da]))^2* (1 + E^(( *Sqrt[ ])/Sqrt[Da]))* * ^2 + (1 + 4*E^(( *Sqrt[ ])/Sqrt[Da]) + 4*E^((2* *Sqrt[ ])/ Sqrt[Da]) + E^((3* *Sqrt[ ])/Sqrt[Da]))*(-1 + )* - 2*(-3 - E^(( *Sqrt[ ])/Sqrt[Da]) + E^((2* *Sqrt[ ])/Sqrt[ Da]) + 3*E^((3* *Sqrt[ ])/Sqrt[Da]))* *(-1 + )* Sqrt[ ]* - 4*(-1 + E^(( *Sqrt[ ])/Sqrt[Da]))* * ^(3/2)*(-1 + + * + E^((2* *Sqrt[ ])/Sqrt[Da])* (-1 + + * ) + E^(( *Sqrt[ ])/Sqrt[Da])* (2 + *(-2 + 3* ))) + (1 + E^(( *Sqrt[ ])/Sqrt[Da]))* *(-2 + 2* + 2* - 5* ^2* + 5* ^2* * + E^((2* *Sqrt[ ])/Sqrt[Da])*(-2 + (2 - 5* ^2)* + * (2 + 5* ^2* )) - 2*E^(( *Sqrt[ ])/Sqrt[Da])* (-2 + (2 - 5* ^2)* + *(2 + 5*(-1 + ^2)* )))) + Sqrt[Da]*(-1 + E^(( *Sqrt[ ])/Sqrt[Da]))*(-1 + )^4* * ((-(1 + E^(( *Sqrt[ ])/Sqrt[Da]) + E^((2* *Sqrt[ ])/ Sqrt[Da]) + E^((3* *Sqrt[ ])/Sqrt[Da])))* (1 - 4* + 3* ^2)* + (-1 + E^(( *Sqrt[ ])/Sqrt[Da]))* *(-1 + )*(-1 + 5* + E^((2* *Sqrt[ ])/Sqrt[Da])* (-1 + 5* ) + E^(( *Sqrt[ ])/Sqrt[Da])*(-2 + 6* ))* Sqrt[ ]* + (-1 + E^(( *Sqrt[ ])/Sqrt[Da]))* (1 + E^(( *Sqrt[ ])/Sqrt[Da]))^2* * * ^(3/2)* (-2 + *(2 + 5* )) - (1 + E^(( *Sqrt[ ])/Sqrt[Da]))* * (-1 + ^2 - 2* ^2* * + 5* ^2* + 2* ^2* ^2* - 2*E^(( *Sqrt[ ])/Sqrt[Da])*(-1 + )*(1 + * (-1 + 2*(-2 + ^2)* )) + E^((2* *Sqrt[ ])/Sqrt[Da])* (-1 - 2* ^2* * + ^2*(1 + (5 + 2* ^2)* )))) + 4*Da^2*Sqrt[ ]*(6 - 18* + 18* ^2 - 6* ^3 + 24* *Sqrt[ ] - 72* * *Sqrt[ ] + 72* * ^2*Sqrt[ ] - 24* * ^3*Sqrt[ ] - 14* + 24* ^2* + 6* * - 72* ^2* * + 30* ^2* + 72* ^2* ^2* - 22* ^3* - 24* ^2* ^3* - 48* * * ^(3/2) + 96* * ^2* ^(3/2) - 48* * ^3* ^(3/2) + 6* ^2* ^2 - 6* ^3* ^2 - 27* + 81* * - 81* ^2* + 27* ^3* - 24* *Sqrt[ ]* + 48* * *Sqrt[ ]* - 24* * ^2*Sqrt[ ]* + 15* * * - 24* ^2* * * - 33* ^2* * + 48* ^2* ^2* * + 18* ^3* * - 24* ^2* ^3* * + ^3* ^2* + 4*E^(( *Sqrt[ ])/Sqrt[Da])*(-1 + )^2*(-2*(-7 + )* - 6* ^2* *(4 + *(-4 + )) + 6* *Sqrt[ ]* ( *(2 + 4* - 5* ) + 2*(-1 + )) + 3*(2 - 5* )* ) - 4*E^((3* *Sqrt[ ])/Sqrt[Da])*(-1 + )^2*(2*(-7 + )* + 6* ^2* *(4 + *(-4 + )) + 6* *Sqrt[ ]* ( *(2 + 4* - 5* ) + 2*(-1 + )) + 3*(-2 + 5* )* ) + E^((4* *Sqrt[ ])/Sqrt[Da])*(6 - 14* + 24* ^2* + 24* *Sqrt[ ]*(-1 + ) - 27* + 3* ^2*(6 + 2* ^2 + *(10 - 11* ) - 8* *Sqrt[ ]* (3 + 4* - ) - 27* + 8* ^2* *(3 + 2* )) - 3* *(6 - 8* *Sqrt[ ]*(3 + 2* - 2* ) - 27* + 8* ^2* *(3 + ) - *(2 + 5* )) + ^3*(-6 + 24* *Sqrt[ ]*(1 + 2* ) + ^2*(-6 + ) + 27* - 24* ^2* *(1 + ) + 2* *(-11 + 9* ))) - 2*E^((2* *Sqrt[ ])/Sqrt[Da])*(6 + (42 - 72* ^2)* - 3* - 3* *(6 - 11* + *(38 - 5* + 8* ^2* (-9 + 2* ))) + ^3*(-6 + ^2*(-6 + ) + 27* - 6* *(5 - 3* + 4* ^2*(-3 + 2* ))) + 3* ^2*(6 + 2* ^2 - 19* + *(34 - 11* + 8* ^2* (-9 + 4* ))))))* - 2*Sqrt[ ]* (96*Da^3*(-1 + E^(( *Sqrt[ ])/Sqrt[Da]))^4* - (-1 + )^5*(-1 - 2*E^(( *Sqrt[ ])/Sqrt[Da])*(-1 + ) + E^((2* *Sqrt[ ])/Sqrt[Da])*(-1 + *(-1 + 2* *Sqrt[ ])) - *(1 + 2* *Sqrt[ ]))*(-1 + E^((2* *Sqrt[ ])/Sqrt[Da])* (-1 + *Sqrt[ ]) - *Sqrt[ ])* - 96*Da^(5/2)*(-1 + E^(( *Sqrt[ ])/Sqrt[Da]))^3*Sqrt[ ]* (-1 - 2* *Sqrt[ ] + *(1 + 2* *Sqrt[ ] + ) + E^(( *Sqrt[ ])/Sqrt[Da])*(-1 + 2* *Sqrt[ ] + *(1 - 2* *Sqrt[ ] + ))) + 4*Da*(-1 + )^2* * (9* - 3* ^2 + 2*E^(( *Sqrt[ ])/Sqrt[Da])*(-1 + )* (5 + 2* *(2 + 7* *Sqrt[ ]) - 5* *Sqrt[ ]) - 2*E^((3* *Sqrt[ ])/Sqrt[Da])*(-1 + )*(-5 - 4* - 5* *Sqrt[ ] + 14* * *Sqrt[ ]) - 5* *Sqrt[ ] + 19* * *Sqrt[ ] - 2* * ^2*Sqrt[ ] + 2* * - 2* ^2* + 6* ^2* ^2* + E^((4* *Sqrt[ ])/Sqrt[Da])* (5* *Sqrt[ ] + *(9 - 19* *Sqrt[ ] + 2* ) + ^2*(-3 + 2* *Sqrt[ ] - 2* + 6* ^2* )) - 2*E^((2* *Sqrt[ ])/Sqrt[Da])*(-10 + *(11 + 2* ) + ^2*(-7 + (-2 + 6* ^2)* ))) + 24*Da^2*(-1 + E^(( *Sqrt[ ])/Sqrt[Da]))^2*(1 - 2* + ^2 + 4* *Sqrt[ ] - 8* * *Sqrt[ ] + 4* * ^2*Sqrt[ ] - 3* + 4* ^2* - 8* ^2* * + 3* ^2* + 4* ^2* ^2* - 8* * * ^(3/2) + 8* * ^2* ^(3/2) + ^2* ^2 + 2*E^(( *Sqrt[ ])/Sqrt[Da])* (1 + (3 - 4* ^2)* + *(-2 + 8*(-1 + ^2)* ) + ^2*(1 + (5 - 4* ^2)* + ^2)) + E^((2* *Sqrt[ ])/Sqrt[Da])*(1 - 4* *Sqrt[ ] - 3* + 4* ^2* + *(-2 - 8* ^2* + 8* *Sqrt[ ]* (1 + )) + ^2*(1 + 3* + 4* ^2* + ^2 - 4* * Sqrt[ ]*(1 + 2* )))) + 4*Da^(3/2)* (-1 + E^(( *Sqrt[ ])/Sqrt[Da]))*(-1 + )*Sqrt[ ]* (9 - 6* - 3* ^2 + 18* *Sqrt[ ] - 18* * ^2*Sqrt[ ] + 4* - 17* * + 24* ^2* * + ^2* - 24* ^2* ^2* - 12* * ^2* ^(3/2) + E^((3* *Sqrt[ ])/Sqrt[Da])*(9 - 18* *Sqrt[ ] + 4* + *(-6 + (-17 + 24* ^2)* ) + ^2*(-3 + - 24* ^2* + 6* *Sqrt[ ]*(3 + 2* ))) - E^(( *Sqrt[ ])/Sqrt[Da])*(9 + 54* *Sqrt[ ] + 4* + *(-30 - 96* *Sqrt[ ] - 17* + 24* ^2* ) + ^2*(21 + 25* - 24* ^2* + 6* *Sqrt[ ]* (7 + 2* ))) + E^((2* *Sqrt[ ])/Sqrt[Da])* (-9 + 54* *Sqrt[ ] - 4* + *(30 - 96* *Sqrt[ ] + 17* - 24* ^2* ) + ^2*(-21 - 25* + 24* ^2* + 6* *Sqrt[ ]*(7 + 2* )))) - 2*Sqrt[Da]* (-1 + E^(( *Sqrt[ ])/Sqrt[Da]))*(-1 + )^4*Sqrt[ ]* (1 - + 3* *Sqrt[ ] - 3* * *Sqrt[ ] - 2* + 2* ^2* - 3* * - 2* ^2* * - 5* * * ^(3/2) - E^(( *Sqrt[ ])/Sqrt[Da])*(-1 + *Sqrt[ ] - 2* + 2* ^2* + *(1 + 7* - 2* ^2* + *Sqrt[ ]* (-1 + 5* ))) + E^((2* *Sqrt[ ])/Sqrt[Da])* (1 + *Sqrt[ ] + 2* - 2* ^2* + *(-1 - 7* + 2* ^2* + *Sqrt[ ]*(-1 + 5* ))) + E^((3* *Sqrt[ ])/Sqrt[Da])*(1 - 3* *Sqrt[ ] - 2* + 2* ^2* + *(-1 - 3* - 2* ^2* + *Sqrt[ ]* (3 + 5* )))))*Subscript[ , 1]) + (-1 + )^2* * ((1 - )*(6720*Da^3*(-1 + E^(( *Sqrt[ ])/Sqrt[Da]))^4*Sqrt[ ] - 17*(-1 + )^6*(1 + E^((2* *Sqrt[ ])/Sqrt[Da])* (1 - *Sqrt[ ]) + *Sqrt[ ])^2*Sqrt[ ] - 153*Sqrt[Da]*(-1 + E^((2* *Sqrt[ ])/Sqrt[Da]))*(-1 + )^5* (-1 + E^((2* *Sqrt[ ])/Sqrt[Da])*(-1 + *Sqrt[ ]) - *Sqrt[ ])* - 840*Da^(5/2)* (-1 + E^(( *Sqrt[ ])/Sqrt[Da]))^3*(-4 - 8* *Sqrt[ ] - 5* + *(4 + 8* *Sqrt[ ] + 9* ) + E^(( *Sqrt[ ])/Sqrt[Da])*(-4 + 8* *Sqrt[ ] - 5* + *(4 - 8* *Sqrt[ ] + 9* ))) + 84*Da^2*(-1 + E^(( *Sqrt[ ])/Sqrt[Da]))^2*(-1 + )*Sqrt[ ]* (-3 - 60* *Sqrt[ ] + *(43 + 100* *Sqrt[ ] + 25* ) + 2*E^(( *Sqrt[ ])/Sqrt[Da])*(-57 + *(57 + 25* )) + E^((2* *Sqrt[ ])/Sqrt[Da])*(-3 + 60* *Sqrt[ ] + *(43 - 100* *Sqrt[ ] + 25* ))) + 4*Da*(-1 + )^3* Sqrt[ ]*(112 - 7* - 224*E^((3* *Sqrt[ ])/Sqrt[Da])* (-1 + )*(-1 + *Sqrt[ ]) + 224*E^(( *Sqrt[ ])/Sqrt[Da])*(-1 + )*(1 + *Sqrt[ ]) + 112* *Sqrt[ ] + 98* * *Sqrt[ ] + 97* - 97* * + 105* ^2* * + E^((4* *Sqrt[ ])/Sqrt[Da])* (112 - 112* *Sqrt[ ] + 97* + *(-7 - 98* *Sqrt[ ] - 97* + 105* ^2* )) - 2*E^((2* *Sqrt[ ])/Sqrt[Da])* (-112 + 97* + *(7 + (-97 + 105* ^2)* ))) + 28*Da^(3/2)*(-1 + E^(( *Sqrt[ ])/Sqrt[Da]))*(-1 + )^2* (15 - 15* + 45* *Sqrt[ ] - 45* * *Sqrt[ ] - 82* + 30* ^2* - 8* * - 30* ^2* * - 90* * * ^(3/2) + E^(( *Sqrt[ ])/Sqrt[Da])* (15 - 15* *Sqrt[ ] + 82* - 30* ^2* + *(-15 + 15* *(1 - 6* )*Sqrt[ ] - 172* + 30* ^2* )) + E^((3* *Sqrt[ ])/Sqrt[Da])* (15 - 45* *Sqrt[ ] - 82* + 30* ^2* + *(-15 - 8* - 30* ^2* + 45* *Sqrt[ ]* (1 + 2* ))) + E^((2* *Sqrt[ ])/Sqrt[Da])* (15 + 15* *Sqrt[ ] + 82* - 30* ^2* + *(-15 - 172* + 30* ^2* + 15* *Sqrt[ ]* (-1 + 6* )))))* - 140*(144*Da^3*(-1 + E^(( *Sqrt[ ])/Sqrt[Da]))^4*Sqrt[ ] - (-1 + )^6*(1 + E^((2* *Sqrt[ ])/Sqrt[Da])* (1 - *Sqrt[ ]) + *Sqrt[ ])^2*Sqrt[ ] - 8*Sqrt[Da]*(-1 + E^((2* *Sqrt[ ])/Sqrt[Da]))*(-1 + )^5* (-1 + E^((2* *Sqrt[ ])/Sqrt[Da])*(-1 + *Sqrt[ ]) - *Sqrt[ ])* + 24*Da^2*(-1 + E^(( *Sqrt[ ])/Sqrt[Da]))^2* (-1 + )*Sqrt[ ]*(-5* *Sqrt[ ] + *(3 + 8* *Sqrt[ ] + 2* ) + 2*E^(( *Sqrt[ ])/Sqrt[Da])* (-5 + *(5 + 2* )) + E^((2* *Sqrt[ ])/Sqrt[Da])* (5* *Sqrt[ ] + *(3 - 8* *Sqrt[ ] + 2* ))) - 24*Da^(5/2)*(-1 + E^(( *Sqrt[ ])/Sqrt[Da]))^3* (-3 - 6* *Sqrt[ ] - 4* + *(3 + 6* *Sqrt[ ] + 7* ) + E^(( *Sqrt[ ])/Sqrt[Da])*(-3 + 6* *Sqrt[ ] - 4* + *(3 - 6* *Sqrt[ ] + 7* ))) + 2*Da*(-1 + )^3* Sqrt[ ]*(9 - 3* - 18*E^((3* *Sqrt[ ])/Sqrt[Da])*(-1 + )* (-1 + *Sqrt[ ]) + 18*E^(( *Sqrt[ ])/Sqrt[Da])*(-1 + )* (1 + *Sqrt[ ]) + 9* *Sqrt[ ] + 3* * *Sqrt[ ] + 8* - 8* * + 6* ^2* * + E^((4* *Sqrt[ ])/Sqrt[Da])*(9 - 9* *Sqrt[ ] + 8* + *(-3 - 3* *Sqrt[ ] - 8* + 6* ^2* )) - 2*E^((2* *Sqrt[ ])/Sqrt[Da])*(-9 + 8* + *(3 + (-8 + 6* ^2)* ))) + 12*Da^(3/2)* (-1 + E^(( *Sqrt[ ])/Sqrt[Da]))*(-1 + )^2* (1 - + 3* *Sqrt[ ] - 3* * *Sqrt[ ] - 6* + 2* ^2* + * - 2* ^2* * - 5* * * ^(3/2) - E^(( *Sqrt[ ])/Sqrt[Da])*(-1 + *Sqrt[ ] - 6* + 2* ^2* + *(1 + 11* - 2* ^2* + *Sqrt[ ]* (-1 + 5* ))) + E^((2* *Sqrt[ ])/Sqrt[Da])* (1 + *Sqrt[ ] + 6* - 2* ^2* + *(-1 - 11* + 2* ^2* + *Sqrt[ ]*(-1 + 5* ))) + E^((3* *Sqrt[ ])/Sqrt[Da])*(1 - 3* *Sqrt[ ] - 6* + 2* ^2* + *(-1 + - 2* ^2* + *Sqrt[ ]* (3 + 5* )))))*Subscript[ , 1]))/ (140*Sqrt[ ]*(24*Da^2*(-1 + E^(( *Sqrt[ ])/Sqrt[Da]))^2*Sqrt[ ] + (-1 + )^4*(-1 + E^((2* *Sqrt[ ])/Sqrt[Da])* (-1 + *Sqrt[ ]) - *Sqrt[ ])*Sqrt[ ] - 12*Da*(-1 + )*(-1 - 2*E^(( *Sqrt[ ])/Sqrt[Da])*(-1 + ) + E^((2* *Sqrt[ ])/Sqrt[Da])*(-1 + * *Sqrt[ ]) - * *Sqrt[ ])*Sqrt[ ] + 4*Sqrt[Da]* (-1 + E^((2* *Sqrt[ ])/Sqrt[Da]))*(-1 + )^3* - 12*Da^(3/2)*(-1 + E^(( *Sqrt[ ])/Sqrt[Da]))* (-1 - 2* *Sqrt[ ] + *(1 + 2* *Sqrt[ ] + ) + E^(( *Sqrt[ ])/Sqrt[Da])*(-1 + 2* *Sqrt[ ] + *(1 - 2* *Sqrt[ ] + ))))^2))