Re: LU Decompsoition for singular matrices
- To: mathgroup at smc.vnet.net
- Subject: [mg33271] Re: LU Decompsoition for singular matrices
- From: Jens-Peer Kuska <kuska at informatik.uni-leipzig.de>
- Date: Wed, 13 Mar 2002 03:14:38 -0500 (EST)
- Organization: Universitaet Leipzig
- References: <a6kko6$d3p$1@smc.vnet.net>
- Reply-to: kuska at informatik.uni-leipzig.de
- Sender: owner-wri-mathgroup at wolfram.com
Hi, what may the SingularValue[] function do ? "SingularValues[m] gives the singular value decomposition for a numerical \ matrix m. The result is a list {u, w, v}, where w is the list of singular \ values, and m can be written as Conjugate[Transpose[u]].DiagonalMatrix[w].v" Regards Jens Muhammad Sabieh Anwar wrote: > > Good day > > The mathematica LUDeecomposition (I think) is based on the Gauss > elimination technique. Such an elimination cannot be done for singular > matrices. (Or can it be done?) > > if A is my singular matrix, then > > LUDecomposition[A] returns me a warning alongwith the correct > decompsition > > In[154]:= > M3={{1,2,3},{1,2,3},{4,5,6}} > In[156]:= > Lud3=LUDecomposition[M3] > > LUDecomposition::sing: Matrix {{1,2,3},{1,2,3},{4,5,6}} is singular. > > Out[156]= > {{{1,2,3},{4,-3,-6},{1,0,0}},{1,3,2},1} > > In[159]:= > Upper[Lud3[[1,All]]] > > Out[159]= > {{1,2,3},{0,-3,-6},{0,0,0}} > > In[161]:= > Lower[Lud3[[1,All]]].Upper[Lud3[[1,All]]] > > Out[161]= > {{1,2,3},{4,5,6},{1,2,3}} > > Any help will be appreciated? > Regards > > Sabieh Anwar > Centre for Qunatum Computation > University of Oxford